
18 ; LOG I N : VO L . 3 2 , NO . 6

S A M S T O V E R , D A V E D I T T R I C H ,
J O H N H E R N A N D E Z , A N D S V E N D I E T R I C H

analysis of the
Storm and Nugache
trojans: P2P is here
Sam Stover is the Director of Tech Ops for iSIGHT Part-
ners, a startup which produces human and electronic
intelligence-fused products and services. Research in-
terests include detection and mitigation methods for
vulnerabilities and malware.

sam.stover@gmail.com

Dave Dittrich is an affiliate information security re-
searcher in the University ofWashington’s Informa-
tion School. He focuses on advanced malware threats
and the ethical and legal framework for responding
to computer network attacks.

dittrich@u.washington.edu

John Hernandez, a recent graduate of the University
ofWashington, is currently working for Casaba Secu-
rity LLC as a security consultant. Research interests in-
clude reverse engineering and malware forensics.

lafkuku@msn.com

Sven Dietrich is an assistant professor in the Comput-
er Science Department at Stevens Institute of Tech-
nology in Hoboken,NJ. His research interests are com-
puter security and cryptography.

spock@cs.stevens.edu

S I N C E TH E ADV EN T O F D I S T R I B U T E D
intruder tools in the late 1990s, defenders
have striven to identify and take down as
much of the attack network as possible, as
fast as possible.This has never been an easy
task, owing in large part to the wide distri-
bution of attacking agents and command
and control (C2) servers, often spread across
thousands of individual networks, or Au-
tonomous Systems in routing terms, around
the globe.Differentials in the abilities and
capabilities of these sites, as well as knowl-
edge of what role the site plays in distrib-
uted attack networks (potentially many ac-
tive at one time),makemitigation harder, as
do differences in legal regimes, etc. [1]. Still,
there has grown a huge population of re-
searchers, security vendors, and organiza-
tions focused on identifying andmitigating
distributed attack networks.

In another article in this issue (“Command and
Control Structures in Malware from Handler/Agent
to P2P”), the authors discuss how topologies for
C2 have changed over time, for various reasons.
The most popular method of C2 in recent years has
been the use of Internet Relay Chat (IRC), either in
standard form or through use of customized imple-
mentations of IRC servers and clients intended to
thwart mitigation efforts. Programs that use IRC
for C2 are known as “bots” (short for “robot”), and
a distributed network of bots is known as a “bot-
net.” The terms “bot” and “botnet” are now be-
coming so widely used that they are losing much of
their original meaning. Botnets will likely be
around for some time, causing a huge amount of
grief for network operators, victims of DDoS at-
tacks, and other victims, but IRC-based bots are
not the be-all and end-all, and the advent of Peer-
to-Peer (P2P) mechanisms for C2 may spell the
eventual death of IRC as a means of C2. At that
point, when IRC is secondary (at best) and possi-
bly not involved at all, will the terms “bot” and
“botnet” still have their original meaning, or will
they become general terms that are synonymous
with “trojan,” “worm,” etc.?

There are some obvious advantages to decentraliz-
ing the C2 mechanism, and P2P networking fits
the bill. The Overnet protocol is particularly attrac-
tive because of the transient, “self-healing” nature
of the network, along with “servers” that actually
share files. Each peer is constantly advertising its

presence, as well as requesting updates from other peers. Throughout this
article, there are references to eDonkey and Overnet portions and fields in
the packets. This is because the Overnet protocol was based on eDonkey—
the primary difference is that pure eDonkey clients are all equal (i.e., there
are no “servers”). Overnet expanded on eDonkey to allow peers to commu-
nicate information about the P2P network via eDonkey methods, but it
added the capability to introduce servers that could host files, if necessary
[2]. As we’ll see, Storm requires the server file-sharing technique offered by
Overnet networks, so technically Storm does not use just the eDonkey pro-
tocol, but the Overnet protocol. To reduce confusion, when generically dis-
cussing the P2P capabilities, the term “Overnet” will be used. However,
when a legacy eDonkey protocol characteristic is being discussed specifical-
ly, for example an eDonkey Connect request, the specific name will be used.

Our goal was to compare two different trojans, with a particular emphasis
on how they rely on P2P mechanisms. We infected a number of fully
patched Windows XP SP2 test systems with samples of Storm and Nugache
trojans and analyzed the resulting network traffic captures. Because a large
volume of research exists on the impact to the host, we decided not to focus
on this (although we did monitor some environmental changes to track the
progress of the infecting malware), but more on the communication meth-
ods. We hoped to be able to define some mitigation methods at both net-
work and host levels, which will be presented at the end of the article.

To adequately describe the similarities and differences between the P2P ca-
pabilities of Storm and Nugache, a brief walkthrough of both is required.
The Storm trojan is primarily designed to send spam, but because of its
modular nature, it can easily acquire other capabilities such as the DDoS
module that was used to great effect early in 2007 [3]. Once installed, the
trojan joins and participates in an extensive network that utilizes the Over-
net protocol to distribute information and eventually supply the infected
peer with the tools it needs. As we will see, the Overnet P2P mechanisms it
uses to propagate information provide a very effective means to this end.

Several different Storm binaries were collected and used to infect the test
systems, but behavior was consistent throughout the exercise. A complica-
tion referred to by one of the authors as the “P2P chicken and egg problem”
exists when a new P2P peer is created: It has no knowledge of the current
state of the network. A certain amount of information must be delivered
with, or in, the binary, which directs the trojan to other infected peers. In
truth, only one peer is needed, but the self-healing nature of P2P networks
requires a very transient state. If all newly infected systems were given one
“superpeer” to connect to, it would only be a matter of time before that IP
address was discovered and addressed via firewall rules, IDS signatures, legal
action, etc. Storm takes the opposite tack, in that it seeds each new peer
with approximately 300 static peers in a text file called spooldr.ini, although
this name may change (e.g., it was wincom.ini previously). This file con-
tained approximately 300 rows, with two fields per row. Figure 1 shows the
first few lines of the spooldr.ini file delivered with our trojan:

[config]
[local]
uport=11873
[peers]
00000000000000009C2DB8A6F34A9C69=452FC581466700
00010CED75C2E4C6222534E6BD5BB4A1=D5868ADE16C900
0001351DE60D58519C2DB8A6F34A9C69=452FC581466700
00037A3051FE23B6BE8B8C79BE6DD56A=41FF4E35835600
F I G U R E 1 : B E G I N N I N G O F C O N F I G U R AT I O N F I L E F O R S T O R M

; LOGIN: DECEMBER 2007 ANALYSIS OF THE STORM AND NUGACHE TROJANS 19

The first field in each line contains the peer hash, which uniquely identifies
the peer node. The second field contains the IP, port, and peer type, in hex,
for the original set of peers with which the trojan will start. These hosts are
the only ones currently known to the trojan, and they will be contacted in
the hope of receiving up-to-date information about the network. The first
packet that our infected system sent out was an eDonkey Publicize packet,
shown in Figure 2, which is designed to alert existing peers that a new sys-
tem is available to the network:

06:14:22.949925 IP 192.168.168.152.2506 > 81.248.26.210.20136: UDP,
length 25

0x0000: 00c0 4f1e 2844 5254 0012 3456 0800 4500 ..O.(DRT..4V..E.
0x0010: 0035 014c 0000 8011 6361 c0a8 a898 51f8 .5.L....ca....Q.
0x0020: 1ad2 09ca 4ea8 0021 77bd e30c 89ae f92fN..!w....../
0x0030: 20bb bac5 dce0 e6ee 6d51 1cda 0000 0000mQ......
0x0040: ca09 00

F I G U R E 2 : E D O N K E Y P U B L I C I Z E P A C K E T

Converting the destination IP address (81.248.26.210) into hex yields
0x51F81AD2. Searching for that string in the spooldr.ini file gives:

F3032DA7F7C1E94A4FE9D59838C67D40=51F81AD24EA800
^^^^^^^

Logic suggests that the destination port follows the IP, and sure enough
0x4EA8 is 20136, the port that our packet went to. The final two digits are
the Overnet Peer Type designation, which we will see later.

Another important aspect of the “chicken and egg” problem is that the new
peer is unsure of its external IP address. A breakdown of the Publicize pack-
et will demonstrate this, as well as lay the groundwork for all of the eDon-
key fields. The eDonkey portion of the packet starts with 0xe3 (byte offset
0x002A), which designates the eDonkey protocol, followed by the type of
eDonkey packet, which in this case is 0x0c for Publicize. The remaining
portion of the Publicize data represents characteristics of the Overnet Peer:

Hash Identifier: 0x89ae f92f 20bb bac5 dce0 e6ee 6d51 1cda
IP Address: 0x0000 0000 (0.0.0.0)
Port: 0xca09 (2506)
Peer Type: 0x00 (0)

Since the trojan does not know its external IP address, the value for the IP
address field is 0.0.0.0. Our system must rely on a replying peer to provide
that information. When a live peer receives a Publicize packet, it responds
with a Publicize ACK (0xe30d), a very simple packet with a 2-byte payload
that informs the publicizing peer that it is willing to communicate. Upon
receiving a Publicize ACK, the new system now has someone to talk to
and quickly sends out two very important packets; an eDonkey Connect
(0xe30a) and an IP Query (0xe31b). The purpose of the Connect request is
to gain current information about the P2P network, while the goal of the IP
Query is to determine its own routable IP address. Upon receiving a Con-
nect Reply (0xe30b) and an IP Query Answer (0xe31c), the new peer has
conquered the chicken and egg problem: It is now aware of new peers, and it
knows its routable IP address.

Until now, the sole purpose of the malware was to find its place in the net-
work by learning about other peers and advertising itself to them. Now that
it has integrated into the network it is time to get to work, and for this tro-
jan, that means spam. This is not to say that the malware stops advertising
and learning—that process continues throughout the life of the infection.
But once a certain steady state in the network is reached, the traffic shifts

20 ; LOG I N : VO L . 3 2 , NO . 6

from pure Publicize and Connect requests to searches for specific kinds of
data, followed by the initiation of TCP sessions. Until this point, all traffic
has been UDP, which is consistent with the eDonkey protocol description:
“In the Edonkey [sic] network the clients are the nodes sharing data. Their
files are indexed by the servers. If they want to have a piece of data (a file),
they have to connect using TCP to a server or send a short search request via
UDP to one or more servers to get the necessary information about other
clients sharing that file”[4]. In the case of the Storm network, TCP connec-
tions are made to servers that hold the keys to the spam kingdom. There are
email lists, mailserver names, and email templates to be had for the asking.
Once a peer knows where to look, it initiates a TCP session to that server, or
in our case, group of servers, looking for the goods. In one test session, our
system repeatedly attempted to establish TCP sessions with ten IP address-
es, three of which were successful: one registered in Kiev, one in Romania,
and one in Illinois. Of the three sessions, one was very short, only 9 bytes,
which implies that the server, although active, did not have the information
being searched for. The other two sessions, however, were exactly 52,806
bytes each, and after these sessions were completed, the trojan began to
spam.

First, before actually sending any spam, MX record queries were made.
Once the response was received from the DNS, numerous short conversa-
tions were held with the mailservers (see Fig. 3).

F I G U R E 3 : S N I F F E D S PA M C OMM U N I C A T I O N S W I T H
M A I L S E R V E R S

After a number of these mailserver tests, the infected system begins to send
spam using standard SMTP.

Nugache

As far as Nugache is concerned, our evaluation is based on examination of
several binaries, spread over many months. The functionality of this trojan
evolved over time, with its command set increasing in conjunction with its
attack and spreading capabilities. Although one of its main purposes is
DDoS, it is also capable of acting as a password-protected proxy, propagating
itself, downloading and running arbitrary programs, and also collecting and
returning keystroke information, possibly compromising user-entered data.
In the early stages of development, Nugache, also known misleadingly as
the “tcp/8 bot,” used fixed ports and IRC for command and control. Later
on, it dropped below the radar, as its command and control communications
moved to random high-numbered ports and evaded detection in most cases.
Keeping track of only a few neighbors, a single trojan would not be aware of
the entire network.

; LOGIN: DECEMBER 2007 ANALYSIS OF THE STORM AND NUGACHE TROJANS 21

06:17:59.971764 IP 209.191.89.172.25 > 192.168.168.152.1092: P 1:136(135) ack 1 win 65535

E....’@./..u..Y........DS..at..aP.......421 Message from (76.2.252.62) temporarily

deferred

06:18:00.018835 IP 65.54.244.72.25 > 192.168.168.152.1096: P 1:311(310) ack 1 win 65535

E..^..@.o...A6.H.......HcK......P.......220 bay0-mc5-f1.bay0.hotmail.com Sending

Unsolicited commercial or bulk e-mail to Microsoft’s computer network is prohibited.

06:18:00.091036 IP 67.91.84.250.25 > 192.168.168.152.1097: P 1:120(119) ack 1 win 65535

E....F@.m..|C[T........IK.8....uP.......220 mail1.nuparts.com Microsoft ESMTP MAIL

Service, Version: 6.0.3790.3959 ready at Sun, 23 Sep 2007 03:43:24 -0700

Nugache is simpler in architecture than Storm, and in some ways it is sim-
pler in its use of P2P C2 communications. This simplicity comes partly from
handling the seeding of peers in a different way from Storm (either by pre-
seeding the compromised host’s Windows Registry with a list of peers prior
to first running the malware or through bootstrapping the list from a small
set of hard-coded default hosts within the binary itself). The default list is in
binary form (not ASCII “IP:PORT” strings) and packed into the binary to
further conceal them.

Once the list of peers is produced, Nugache peers can join the network us-
ing an RSA key exchange to share seed material used to generate and return
a Rijndael 256-bit OFB (Output Feedback) mode key. This exchange is
shown in Figure 4. Once encryption is set up, an internal protocol is used
to perform other tasks. One of these tasks is to negotiate a “connect-back”
process to determine the initiating peer’s routable IP address and listening
port number, at the same time determining whether this peer can act as a
“servent” or is only capable of being a client. As with Storm, knowing
whether a peer is capable of being a servent is important to determine.

F I G U R E 4 : S A M P L E K E Y E X C H A N G E A N D E N C R Y P T I O N S E T U P

Other tasks involve checking to see if the peer should have its binary in-
stance updated, or whether an updated peer list is needed. Nugache suffers
from the same problem as Storm in regard to needing an up-to-date list of
peers to use for rejoining the P2P network. After that, a “PING” and
“PONG” keep-alive exchange is engaged, and peers inform their connected
siblings of any newly discovered servant peers that join the network. This
latter information is used to “refill” the seed list in the Windows Registry in
the event that excessively nonresponsive peers have been dropped from the
list.

Now that we’ve briefly discussed Nugache and Storm, we can identify the
similarities and differences between the two trojans, specifically with respect
to how they utilize P2P to function. We’ve broken the types of comparisons
into nine different categories: primary command and control mechanisms,
initial peer list seeding, use of cryptography to secure the C2 channel, use of
DNS, connectivity, updates, listening port for P2P connections, architecture,
and detection.

PRIMARY COMMAND AND CONTROL MECHANISM

Nugache almost entirely handles C2 via the encrypted P2P channel estab-
lished between connected client and servant peers. There is an IRC capabili-

22 ; LOG I N : VO L . 3 2 , NO . 6

ty built in, and Nugache peers could respond to (or direct) classic IRC bots
in standard IRC channels, but IRC sessions have very rarely been seen in
practice.

Storm’s C2 is handled via TCP initiated to servers that were not discovered
via pure P2P client integration communications. That is, when the peer
joins the network, there is a lot of communication with other Overnet peers,
but these peers are utilized purely to (a) determine the state of the network
and (b) join it. No file exchanges take place via P2P communications; how-
ever, IP addresses of “servers” hosting email templates, email lists, and
mailservers are disseminated using P2P communications. As such, Storm is
more of a “pull” C2 technology—servers do not “push” commands down to
the clients; rather, the clients “pull” data from servers.

IN IT IAL PEER L IST SEEDING

For a Nugache peer to join the network, it must first know of at least one ac-
tive servant peer that will accept an incoming connection. Once connected,
peers will be told of other servant peers and will maintain a list of up to 100
such peers for future use in rejoining the network. How that list of 100 peers
is first loaded is controlled by a “bootstrap” process. How it is kept up-to-
date is a function of the Nugache P2P algorithm.

The initial seeding is done one of two ways. Either a helper program is run
to fill the Windows Registry, which then starts the Nugache program, or the
Nugache program uses an internal list to attempt to find an active servant
peer, which then provides a current list of up to 100 recently seen servant
peers.

Once connected to one or more peers, those peers will report new connect-
ing servant peers. This allows connected peers to learn of recently active ser-
vant peers, which have a high probability of being available for reconnecting
after a system reboot or shutdown.

Storm seeds its initial peer list via a text file (“spooldr.ini” in this investiga-
tion). The infected systems sends eDonkey Publicize packets to all of the
peers located in the spooldr.ini file. Once a Publicize ACK is received from a
live peer, Connect requests that ask for up-to-date information on peers are
delivered. Publicize and Connect packets are consistently sent to any and all
peers throughout the life of the infected system.

USE OF CRYPTOGRAPHY TO SECURE THE C2 CHANNEL

Nugache uses a variable bit length RSA key exchange, which is used to seed
symmetric Rijndael-256 session keys for each peer connection. Rijndael is
also used to encrypt keystroke log files prior to transfer, using a key that is
derived from information unique to the peer sending the keylog data. IRC
sessions (when used, which is rarely) are not encrypted in any known ver-
sion of Nugache.

Storm uses a hash mechanism for encrypting data requests to peers and
servers. In previous examinations of this trojan, the encrypted string was
stored in the meta-tag field of an eDonkey Search Result packet. In the ver-
sion we investigated, the meta-tag field was either empty or contained a
cleartext string (e.g., “20765.mpg;size=78092;”). This indicates that the ob-
fuscation and encryption method is evolving.

; LOGIN: DECEMBER 2007 ANALYSIS OF THE STORM AND NUGACHE TROJANS 23

USE OF DNS

Aberer and Hauswirth [5] cite the description of P2P as given by Clay Shir-
ky (The Accelerator Group), which states that, “P2P nodes must operate
outside the DNS system, and have significant or total autonomy from central
servers” [6]. In this respect, Nugache is a true P2P malware artifact. DNS is
almost entirely unused, save for immediately prior to DDoS events, joining
IRC channels on rare occasions, or for other activity that peers are tasked
with via commands, and there is no central C2 server (i.e., peers operate ful-
ly autonomously). As there is no use of DNS for seeding peer lists, for iden-
tifying C2 channels, or for joining the network, any DNS-based detection or
mitigation mechanism will be entirely blind and useless in dealing with Nu-
gache.

Similarly, Storm relies on DNS purely for MX record requests. Mailserver
names are passed to the trojan (e.g., “gmail.com”), it performs an MX record
query, and upon receiving the answer, it proceeds to connect to port 25 and
send spam. Although no DDoS activity was observed, it seems logical to as-
sume that a similar process would be followed: A domain name would be
passed to the trojan, DNS queries would be made, and then DDoS activity
would commence. At no time was any DNS activity observed that was relat-
ed to the P2P or to the TCP/C2 communications.

CONNECTIVITY

Nugache peers maintain an in-degree of connections that totals no more
than ten clients at any time. The out-degree varies, but it is typically less
than half of the ten-client limit. The result is a typical peer with at most
about 13–15 connections active at any given time.

Storm seems to collect as many active peers as possible. Because connec-
tions to these peers utilize UDP, the malware is chatty, but the traffic is light-
weight. Constant Publicize and Connect packets are delivered while the sys-
tem is active. There were approximately 300 peers in the original spooldr.ini
file, but the file would grow as new peers were discovered. In one case, after
less than 30 minutes, the spooldr.ini file contained over 430 entries. Theo-
retically, this number could, if monitored, be used to infer the size of the
P2P network.

UPDATES

Nugache uses an internal release number to indicate the current version of
the currently running code. When peers connect to the P2P network, they
compare version numbers, and a peer with a lower version number will re-
quest an update from the peer it just connected with. This allows the entire
network to continually upgrade itself as peers come back online after an ab-
sence. (Nugache stopped using the fixed port 8/tcp well over a year ago, yet
a handful of connection attempts to port 8/tcp can still be observed occur-
ring today.)

Storm updates itself in two main ways. Peer updates and information
queries utilize UDP P2P communications, whereas TCP sessions are used to
download important data such as new functionality (i.e., the DDoS mod-
ule), Mailservers, and email templates.

24 ; LOG I N : VO L . 3 2 , NO . 6

L ISTEN ING PORT NUMBER FOR P2P CONNECTIONS

Although Nugache is known to some analyses as the “tcp port 8 bot,” it has
not used this fixed port since June 2006. Each peer chooses its own random-
ly generated high-numbered port to listen on, ranging from 1025 to 65535.
On connecting to the Nugache P2P network, the connecting peer will report
what port it listens on, and the connected (servant) peer will check to see if
a connection can be made back to the connecting peer. If a connection can
be made, the routable address of the connecting peer is sent to that peer and
the IP:PORT combination is reported to other active peers for future refer-
ence. (See the section on “Initial Peer List Seeding.”)

Storm picks a random high port for communications and advertises that
port in every packet that it sends out. Publicize and Publicize ACK packets
are used to establish initial communications as well as to verify the proper
IP address and port number. In the case of a peer receiving a Publicize pack-
et that contains the 0.0.0.0 IP, that peer will transmit an Identify Packet re-
questing the proper IP.

ARCH ITECTURE

Nugache is a monolithic binary executable, written in Visual C++ and
packed with a simple home-grown packer. Other helper programs have been
observed (e.g., used for seeding the initial peer list and installing the Nu-
gache binary on infected systems), but these programs are secondary and
not required to infect a host with Nugache. State is maintained primarily
through the use of the Windows Registry; however, a keystroke log is kept
until retrieved via commands from the attacker controlling the Nugache P2P
network.

Storm is packed åusing a more complex method. The first stage of unpack-
ing is decrypted using the XOR function; then a TEA decryption algorithm
is applied; finally, the binary is reconstructed using the TIBS unpacker. After
the binary is extracted it drops a copy of the original binary plus the spool-
dr.ini file into the Windows directory and also extracts a rootkit driver
called spooldr.sys to the system32 directory. Then it loads this driver into
the kernel via an unexpired call from tcpip.sys called SfcFileException, al-
lowing the binary to hide from the OS [7]. After the binary is set, it attempts
to communicate to the peers located in the spooldr.ini file and establish it-
self in the P2P network. Storm is a multicomponent modular set of pro-
grams. Each component has a different purpose, and the programs are in-
stalled in a set after the initial infection has occurred and the Storm program
has successfully found a C2 server.

DETECTION

There is no static IDS signature that will detect Nugache P2P flows. The RSA
key exchange is dynamic enough that one cannot get a 100% successful hit
rate on detecting the key exchange. (The “Bleeding-Snort” [8] signatures for
Nugache that appeared in May 2006 are insufficient to detect all Nugache
flows.) More research is necessary to come up with an effective means of IDS
detection of Nugache flows.

Nugache can be detected on hosts through various signatures of the infec-
tion itself, including Windows Registry keys in HKCU\SOFTWARE\GNU\, a
MUTEX lock “d3kb5sujs50lq2mr,” the keystroke log file (e.g., C:\Docu-

; LOGIN: DECEMBER 2007 ANALYSIS OF THE STORM AND NUGACHE TROJANS 25

ments and Settings\user\Application Data\FNTCACHE.BIN), and one of at
least three known names for the binary itself (C:\WINDOWS\system32
\mstc.exe, system32\mvwatvx.exe, and system32\wmipvs.exe).

Storm can be detected in several different manners, none of which is fool-
proof.

On the host, one way (outside of noticing the trojan installing itself) to
identify Storm is to find the spooldr.ini file. A host-based IDS could be con-
figured to look for that file and understand its contents. Once the file is
found, it can be removed, and the system cannot function. When we cleared
that file of peers, the trojan was unable to complete the initial Publicize ad-
vertisements and was effectively neutralized. Obviously, this is not a long-
term solution, as once it becomes public, the format of the file will change.
As with Nugache, signatures could be written for different stages of the ini-
tial infection. One example of this kind of detection would be to install a
system-monitoring tool such as Capture-BAT [9], which was utilized during
this investigation to determine what the malware was doing (e.g., the many
“writes” to spooldr.ini were one indication that the file was being updated).
Incorporating the Capture-BAT output file into a HIDS strategy would pro-
vide a good source of intel for which signatures could be written.

On the network side, it’s much more difficult to differentiate Storm P2P traf-
fic from legitimate P2P communications. It would be much easier to detect
the voluminous amount of outbound TCP/25 traffic from an infected sys-
tem; however, this is a very reactive strategy. User education is likely the
only mitigation method to prevent installation of the malware.

Conclusion

We have just seen a comparison of two recently successful distributed mal-
ware networks that employ P2P concepts, in slightly different roles and de-
grees, for command and control. We must assume that these are just two of
the first successful attempts to move away from the central C2 mechanism
of IRC botnets, toward distributed attack networks that are significantly
harder to detect, to shut down, or to trace back to the attackers who are con-
trolling them. Many papers and articles have predicted this eventuality, and
the task now is to understand how the threat landscape has shifted and to
adjust mitigation strategies accordingly. As we have seen in the past, the old
tools and tactics do not entirely go away, but are joined by new tools and
tactics. Likewise, defenses are not to be thrown out, but they must expand
to accommodate the new reality of a multiplicity of attack tools and tactics,
as well as the old. The trick is to adjust fast enough to avoid giving the at-
tackers the advantage for long, and that is the challenge that we revel in ris-
ing to meet.

ACKNOWLEDGMENTS

The authors would like to thank Christian Seifert for his assistance with
Capture-BAT.

REFERENCES

[1] D. Dittrich and K. E. Himma, “Active Response to Computer Intru-
sions,” in The Handbook of Information Security, edited by H. Bidgoli (Wiley,
New York, 2005).

26 ; LOG I N : VO L . 3 2 , NO . 6

[2] http://en.wikipedia.org/wiki/EDonkey2000.

[3] http://www.secureworks.com/research/threats/storm-worm/?threat
=storm-worm.

[4] “The eDonkey 2000 Protocol”: ftp://ftp.kom.e-technik.tu-darmstadt
.de/pub/papers/HB02-1-paper.pdf.

[5] “An Overview on Peer-to-Peer Information Systems”: http://www
.p-grid.org/publications/papers/WDAS2002.pdf.

[6] http://www.scripting.com/davenet/2000/11/15/clayShirkyOnP2p.html.

[7] http://www.reconstructer.org/papers/Peacomm.C - Cracking the
nutshell.zip.

[8] http://www.bleedingsnort.com/.

[9] http://www.nz-honeynet.org/capture-standalone.html.

; LOGIN: DECEMBER 2007 ANALYSIS OF THE STORM AND NUGACHE TROJANS 27

